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Abstract 
 
The unavailability of an Optical Character Recognition (OCR) scheme meeting basic standards has 
been a major impediment in the digitization of Telugu. The quest for an appropriate solution has been 
elusive due to the inherently complicated nature of the script itself and partly to the lack of a concerted 
effort. We propose a scheme based on K-means and Support Vector Machines that improves accuracy 
of current implementations. We have performance tested against deliberately introduced sources of 
errors which are known to cause performance issues while lacking robust solutions. 
  
Introduction 
 
Telugu script is an abugida written in syllables; each unit being a combination of at least one constant 
and associated vowels being attached laterally attached vowels. Each syllable is a combination of one 
or more consonants and laterally attached vowels.This contiguous nature of the script makes it 
impractical to separate characters. Consequently training the recognition algorithm to recognize a 
larger set of symbols may be more robust rather than a messier approach requiring extraction of relative 
glyph positions. Different permutations of the 16 vowels and 37 consonants give rise to approximately 
500 unique glyphs. For this project we focus on the 471 most commonly used glyphs. Despite its 
popularity of use (over 70 million native speakers) there are no OCR schemes available which could be 
deployed commercially. 
 
Rendering 
 
Stanford as rendered in Telugu is depicted below. Notice the rendered combination of a vowel and two 
preceding consonants, with the vowel attached above and the second consonant below.  
 
 
 
 
 
 
 
 
 
 
Feature Learning 
When viewed through the lens of accuracy; feature learning is a critical aspect in any OCR algorithm 
especially considering the low accuracy which was achieved by an Artificial Neural Networks(ANN) 
based implementation that we initially attempted. Though this ANN algorithm may not have been 
accurate enough in itself, it did provide us with important insights into developing an accurate and 
robust framework. 
 



Auto encoders are the method of choice for the reduction of higher dimensional pixel-data to a lower 
but much more tractable feature space. Papusha and Satheesh provide some novel ideas of extracting 
features using K-means, with results similar to auto-encoding techniques while achieving much higher 
agility in terms of both implementation and execution. Eventually a support vector machine (SVM) 
based solution is seen to offer higher accuracy. 
 
Training and Testing data.  
 
Glyphs rendered using the popular Pothana font are stored as a single file with identity data and 
location coordinates made available in a text file. Features are extracted from these relatively pristine 
digital renditions as part of data pre-processing and are used to score images that need to be identified. 
 
Morphed versions of these digitally rendered images also form the base data set for training and testing. 
To reflect real-world data, randomly selected pixels are dropped from the image data. Missing pixels, a 
considerably complex issue that plagues OCR schemes, comparatively affects accuracy to a higher 
degree than other issues like noise which may easily be resolved using standardized approaches. More 
importantly it has to be handled as part of the OCR implementation itself while noise reduction, for 
example, may be handled externally using robust algorithms available as free-ware. Up to 5 degrees of 
tilt has been randomly introduced to simulate scanning issues that may occur with actual real world 
data sources. Ultimately each digitally rendered character is modified independently a total of ten times 
with eight instances being used for training and two for cross validation.  
 
 
 
 
 
 
 
 
 
Original rendered image of letter ‘a’ (as in the word Apple) in Pothana font along with three distorted 
versions. 
 
 
Base Algorithmic Framework: 
 
PreProcessing:  
 
Step 0: 
Original input image data is scaled down to a size of 64x64 pixels. 
 
Step 1:  
Scaled Images are consequently clustered and over 20,000 pieces of the script from various letters. This 
is done in either of the two following ways; comparatively depicted in the  
 
Step 1a:  
A k-means based clustering approach applied on each glyph.  
 
Step 1b: 



Each of the glyphs are divided in to 50 over lapping pieces which are 16x16 pixels dimensionally.  
 

 
Step 2: 
The 'principal components' of the script are obtained from the above 20,000 pieces by another level of 
clustering implemented using a k-means based approach (in the 256 dimensional space). 
 
The principal components that define the script, obtained using this approach are equivalent to finding 
auto-encoding blocks for the script. Both euclidean and hamming distances are implemented, though 
statistically significant differences in the accuracy between either implementation are not observed. 
 
Sixty four centroids which form the base features are extracted from the training data.These are shown 
in the image below.  
 
 
 



64 centroid or base-features 
 
 
 
Feature extraction.  
 
Morphed versions of the digital renditions are used as the input data requiring classification which 
would be obtained from scanned images in an actual application. These images are divided into four 
blocks labelled as Top Right, Top Left, Bottom Right, and Bottom left respectively. Each of the four 
split-image part are processed and distance metrics from the 64 base feature or centroids are calculated. 
This was done using three different measures (inner product, hamming distance or L2 distance). Any 
measure may be used as each of the measures provides similar accuracy scores with no statistical 
significance observed in the scoring-accuracy differences between pairs of the three measures.  
These are calculated by processing each scanned image’s 4 sub-blocks against each of the 64 centroids. 
Thus for any given input image after pre-processing (64x64 pixels),  for every block (32x32 pixels) and 
against each centroid (16x16 pixels) we record an average of the distance metric (or inner-products) as 
a vector denoted as the feature vector. 
 
The feature vector length = number of centroids X number of split-image blocks of the image 
length(vector) = 64 X 4 = 256 elements 
 
 
The aspect ratio of the original scanned glyph is added as the last element that is the 257th element of 
the feature vector though this must be done before the down-scaling of the glyph’s image. 
 
Thus for each of the ten image per glyph we have a 257 element vector. Training the lib-linear SVM is 
done using 8 of these vectors; the remaining 2 being used for testing.  



 
Results 
 
Out of the nearly 940 test images, 110 were misclassified, resulting in an accurate identification 88% of 
the time. This is much better than the vanilla ANN that was trained for the mid-quarter milestone.  
We hope to improve this accuracy by optimization over arbitrarily chosen parameters like block size 
and features (or centroids) extracted. 
 
An example of character miss-classification is shown below to illuminate the difficulties that still need 
to be overcome. Understandably even we had a difficult time as children in being required to 
distinguish them!  Our endurance gradually built up by repeated testing and training. 
 
<<Confused.png>> 
 
 
 
 
 
 
 
 
Future Work 
 
There are several improvements that we hope to test in the near future in our quest to develop a robust 
open-source OCR scheme for Telugu other than just optimizing over the number of features extracted 
and image divisions mentioned above. 
Instead of averaging the distances, using the maximum along with its location in the sub-image may 
lead to an improvement in the accuracy.  
 
Leveraging the number and  relative position of consonants and vowels in the image will narrow down 
the number of centroids in the scoring set for each image. This would require classification of each 
image on the basis of the number and position of vowels and consonants in the scanned image.  
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